Prof. Majewska: Toksyny w zywnosci, lekach, kosmetykach

Tym razem nie będzie o szczepieniach, lecz o rakotwórczych substancjach  zawartych w pokarmach, kosmetykach i lekach.   Jedną z nich jest dwutlenek tytanu (TiO2) dodawany do prawie wszystkich leków, witamin,  większości kosmetyków jako rzekomo neutralny.   Nie ma ku temu żadnego racjonalnego uzasadnienia,  ten związek nie jest  ani lekiem, ani wspomagaczem,  jest dodawany  tylko jako wypełniacz.  Jest drogi, często zanieczyszczony i wcale nie jest neutralny.  O wiele taniej i bezpieczniej jest dodawać  wypełniacze takie jak celulozę czy skrobię.

Szkodliwość TiO2  wynika z  jego chemiczno-fizycznych właściwości  (stosuje się go w postaci  nanocząstek )  oraz zdolności do produkowania w organizmie toksycznych rodników tlenowych, które wywołują oksydacyjny stres w komórkach.  Liczne badania wykazały, że TiO2 uszkadza strukturę komórek, wnika do jadra komórkowego, działa genotoksycznie i rakotwórczo.   Powszechność  stosowania tego związku może być jedną z przyczyn epidemii chorób nowotworowych obserwowanych obecnie na całym świecie, jak również  chorób degeneracyjnych  i zaburzeń rozrodczych .

W Polsce w aptekach praktycznie nie można znaleźć multiwitamin bez TiO2,choć takie są dostępne na zachodzie.  Nie trzeba się z tym godzić, bo witaminy nie powinny być toksyczne.   Proponuje zasypywać producentów leków, witamin i kosmetyków listami protestacyjnymi i żądać usunięcia TiO2 z ich produktów.   Związek ten znajduje się także w  kremach przeciwsłonecznych (sun screens),  które rzekomo mają chronić przed nowotworami skóry,  a naprawdę je indukują, m.in. dzięki zawartości TiO2.  Lepiej przebywać na słońcu krótko i chronić się lekką odzieżą z bawełny, niż smarować się takimi kremami.

Powinno się też unikać wszelkich kosmetyków i leków z aluminium , z olejami mineralnymi  i akrylatami.  Szczególnie ważne są kosmetyki dla dzieci.  Zamiast oliwki mineralnej można  stosować  np. oliwę jadalną.   Należy także unikać pokarmów zawierających sztuczne barwniki, toksyczne konserwanty i syrop kukurydziany czy glukozowo-fruktozowy, który często zawiera  rtęć (o czym się nie pisze).  Sprawdziłam, że większość lodów w Polsce zawiera te syropy.  Warto pisać do producentów lodów i żądać, by powrócili do słodzenia  ich cukrem.

Konieczne jest unikanie soli z antyzbrylaczem ( E536), czyli żelazocyjankiem  potasu, z którego pod wpływem kwasów  żołądkowych wydziela się toksyczny cyjanowodór.  To także może być przyczyną epidemii nowotworów i  wielu chorób degeneracyjnych, bo  cyjanowodór zatruwa  mitochondria we wszystkich komórkach  organizmu.   Radzę pisać listy protestacyjne do producentów i żądać by usunęli ten związek z soli.  Tylko bojkotem zmusimy ich do zaprzestania szkodliwych praktyk.

W załączeniu streszczenia  publikacji, które pokazują  genotoksyczne, cytotoksyczne i  rakotwórcze działanie TiO2.

 

———————
Nat Commun. 2013;4:1673. doi: 10.1038/ncomms2655.

Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the
homophilic interaction of VE-cadherin.

Setyawati MI(1), Tay CY, Chia SL, Goh SL, Fang W, Neo MJ, Chong HC, Tan SM, Loo
SC, Ng KW, Xie JP, Ong CN, Tan NS, Leong DT.
(1)Department of Chemical and Biomolecular Engineering, National University of
Singapore, Singapore 117576, Singapore.

The use of nanomaterials has raised safety concerns, as their small size
facilitates accumulation in and interaction with biological tissues. Here we show
that exposure of endothelial cells to TiO₂ nanomaterials causes endothelial cell
leakiness. This effect is caused by the physical interaction between TiO₂
nanomaterials and endothelial cells’ adherens junction protein VE-cadherin. As a
result, VE-cadherin is phosphorylated at intracellular residues (Y658 and Y731),
and the interaction between VE-cadherin and p120 as well as β-catenin is lost.
The resulting signalling cascade promotes actin remodelling, as well as
internalization and degradation of VE-cadherin. We show that injections of TiO₂
nanomaterials cause leakiness of subcutaneous blood vessels in mice and, in a
melanoma-lung metastasis mouse model, increase the number of pulmonary
metastases. Our findings uncover a novel non-receptor-mediated mechanism by which
nanomaterials trigger intracellular signalling cascades via specific interaction
with VE-cadherin, resulting in nanomaterial-induced endothelial cell leakiness.

2. J Immunotoxicol. 2011 Jan-Mar;8(1):56-67. doi: 10.3109/1547691X.2010.543995. Epub
2011 Feb 3.

An increase in mouse tumor growth by an in vivo immunomodulating effect of
titanium dioxide nanoparticles.

Moon EY(1), Yi GH, Kang JS, Lim JS, Kim HM, Pyo S.

(1)Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of
Korea. eunyimoon@sejong.ac.kr

Here, we investigated whether titanium dioxide (TiO₂) nanoparticles affect in
vivo tumor growth through the modulation of mononuclear leukocytes. In vitro
lymphocyte proliferation by lipopolysaccharide (LPS) or concanavalin A (ConA) was
reduced by < 25 nm TiO₂ with a dose-dependent manner. Similarly, TiO₂
nanoparticles inhibited nitric oxide (NO) production from bone marrow-derived
macrophages obtained from naïve mice. When mice were intraperitoneally (IP)
injected with < 25 or < 100 nm TiO₂ once a day for 7 days, total cell number of
splenocytes was reduced in the spleen of TiO₂ nanoparticle-exposed mice. Both
CD4+ and CD8+ T-lymphocyte numbers were significantly decreased and B-lymphocyte
development was retarded by host exposure to the TiO₂ nanoparticles.
LPS-stimulated spleen cell proliferation was significantly reduced by host
exposure to < 25 or < 100 nm TiO₂, but no changes were detected in
ConA-stimulated spleen cell proliferation. Further, LPS-stimulated cytokine
production by peritoneal macrophages and the percentage of NK1.1+ natural killer
cells among splenocytes was reduced by the host exposures to the TiO₂
nanoparticles. When mice were IP injected with TiO₂ nanoparticles once a day for
28 days prior to the subcutaneous implantation of B16F10 melanoma cells, tumor
growth was subsequently significantly increased. Collectively, these results show
that TiO₂ nanoparticles may damage the development and proliferation of B- and
T-lymphocytes, reduce the activity of macrophages, and decrease natural killer
(NK) cell population levels, outcomes that appear to lead to an increase in tumor
growth in situ. These studies allow us to suggest that TiO₂ nanoparticles might
have the potential to enhance tumor growth through immunomodulation of B- and
T-lymphocytes, macrophages, and NK cells.

1. Toxicol Lett. 2014 May 2;226(3):314-9. doi: 10.1016/j.toxlet.2014.02.020. Epub
2014 Mar 2.

Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro.

Chen Z(1), Wang Y(2), Ba T(3), Li Y(4), Pu J(5), Chen T(6), Song Y(7), Gu Y(8),
Qian Q(9), Yang J(10), Jia G(11).

With the extensive application of titanium dioxide (TiO2) nanoparticles (NPs) in
food industry, there is a rising debate concerning the possible risk associated
with exposure to TiO2 NPs. The purpose of this study is to evaluate the
genotoxicity of TiO2 NPs using in vivo and in vitro test systems. In vivo study,
the adult male Sprague-Dawley rats were exposed to anatase TiO2 NPs (75 ± 15 nm)
through intragastric administration at 0, 10, 50 and 200mg/kg body weight every
day for 30 days. The γ-H2AX assay showed TiO2 NPs could induce DNA double strand
breaks in bone marrow cells after oral administration. However, the micronucleus
test revealed that the oral-exposed TiO2 NPs did not cause damage to chromosomes
or mitotic apparatus observably in rat bone marrow cells. In vitro study, Chinese
hamster lung fibroblasts (V79 cells) were exposed to TiO2 NPs at the dose of 0,
5, 10, 20, 50 and 100 μg/mL. Significant decreases in cell viability were
detected in all the treated groups after 24h and 48h exposure. Significant DNA
damage was only observed at the concentration of 100 μg/mL after 24h treatment
using the comet assay. The obvious gene mutation was observed at the
concentration of 20 and 100 μg/mL after 2h treatment using hypoxanthine-guanine
phosphoribosyl transferase (HPRT) gene mutation assay. This study presented a
comprehensive genotoxic evaluation of TiO2 NPs, and TiO2 NPs were shown to be
genotoxic both in vivo and in vitro tests. The gene mutation and DNA strand
breaks seem to be more sensitive genetic endpoints for the detection of TiO2 NPs
induced genotoxic effects.

2. Biomed Pharmacother. 2014 Feb;68(1):59-64. doi: 10.1016/j.biopha.2013.08.006.
Epub 2013 Aug 23.

Effects of titanium dioxide nanoparticles in human gastric epithelial cells in
vitro.

Botelho MC(1), Costa C(2), Silva S(3), Costa S(3), Dhawan A(4), Oliveira PA(5),
Teixeira JP(3).

Manufacturing or using nanomaterials may result in exposure of workers to
nanoparticles. Potential routes of exposure include skin, lung and
gastrointestinal tract. The lack of health-based standards for nanomaterials
combined with their increasing use in many different workplaces and products
emphasize the need for a reliable temporary risk assessment tool. Therefore, the
aim of this work was to explore the effects of different doses of titanium
dioxide nanoparticles on human gastric epithelial cells in vitro. We analyzed
proliferation by MTT assay, apoptosis by Tunel, migration by injury assay,
oxidative stress by determining GSH/GSSG ratio and DNA damage by Comet assay on
nanoparticle-treated AGS human gastric epithelial cell line in comparison to
controls. We show and discuss the tumor-like phenotypes of nanoparticles-exposed
AGS cells in vitro, as increased proliferation and decreased apoptosis. Our
results demonstrate for the first time that nanoparticles induce tumor-like
phenotypes in human gastric epithelial cells.

3. PLoS One. 2013 Aug 8;8(8):e70618. doi: 10.1371/journal.pone.0070618. eCollection
2013.

Acute toxicity of intravenously administered titanium dioxide nanoparticles in
mice.

Xu J(1), Shi H, Ruth M, Yu H, Lazar L, Zou B, Yang C, Wu A, Zhao J.

Author information:
(1)The Faculty of Life Science of College of Science & Technology, Ningbo
University, Ningbo, China.

BACKGROUND: With a wide range of applications, titanium dioxide (TiO₂)
nanoparticles (NPs) are manufactured worldwide in large quantities. Recently, in
the field of nanomedicine, intravenous injection of TiO₂ nanoparticulate carriers
directly into the bloodstream has raised public concerns on their toxicity to
humans.
METHODS: In this study, mice were injected intravenously with a single dose of
TiO₂ NPs at varying dose levels (0, 140, 300, 645, or 1387 mg/kg). Animal
mortality, blood biochemistry, hematology, genotoxicity and histopathology were
investigated 14 days after treatment.
RESULTS: Death of mice in the highest dose (1387 mg/kg) group was observed at day
two after TiO₂ NPs injection. At day 7, acute toxicity symptoms, such as
decreased physical activity and decreased intake of food and water, were observed
in the highest dose group. Hematological analysis and the micronucleus test
showed no significant acute hematological or genetic toxicity except an increase
in the white blood cell (WBC) count among mice 645 mg/kg dose group. However, the
spleen of the mice showed significantly higher tissue weight/body weight (BW)
coefficients, and lower liver and kidney coefficients in the TiO₂ NPs treated
mice compared to control. The biochemical parameters and histological tissue
sections indicated that TiO₂ NPs treatment could induce different degrees of
damage in the brain, lung, spleen, liver and kidneys. However, no pathological
effects were observed in the heart in TiO₂ NPs treated mice.
CONCLUSIONS: Intravenous injection of TiO₂ NPs at high doses in mice could cause
acute toxicity effects in the brain, lung, spleen, liver, and kidney. No
significant hematological or genetic toxicity was observed.

4. Toxicol In Vitro. 2014 Feb;28(1):60-9. doi: 10.1016/j.tiv.2013.06.009. Epub 2013
Jun 27.

Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica
and multi-walled carbon nanotubes in human lymphocytes.

Tavares AM(1), Louro H, Antunes S, Quarré S, Simar S, De Temmerman PJ, Verleysen
E, Mast J, Jensen KA, Norppa H, Nesslany F, Silva MJ.

Author information:
(1)Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge
(INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal.

Toxicological characterization of manufactured nanomaterials (NMs) is essential
for safety assessment, while keeping pace with innovation from their development
and application in consumer products. The specific physicochemical properties of
NMs, including size and morphology, might influence their toxicity and have
impact on human health. The present work aimed to evaluate the genotoxicity of
nanosized titanium dioxide (TiO2), synthetic amorphous silica (SAS) and
multiwalled carbon nanotubes (MWCNTs), in human lymphocytes. The morphology and
size of those NMs were characterized by transmission electron microscopy, while
the hydrodynamic particle size-distributions were determined by dynamic light
scattering. Using a standardized procedure to ensure the dispersion of the NMs
and the cytokinesis-block micronucleus assay (without metabolic activation), we
observed significant increases in the frequencies of micronucleated binucleated
cells (MNBCs) for some TiO2 NMs and for two MWCNTs, although no clear
dose-response relationships could be disclosed. In contrast, all forms of SAS
analyzed in this study were unable to induce micronuclei. The present findings
increase the weight of evidence towards a genotoxic effect of some forms of TiO2
and some MWCNTs. Regarding safety assessment, the differential genotoxicity
observed for closely related NMs highlights the importance of investigating the
toxic potential of each NM individually, instead of assuming a common mechanism
and equal genotoxic effects for a set of similar NMs.

5. J Appl Toxicol. 2013 Oct;33(10):1097-110. doi: 10.1002/jat.2863. Epub 2013 Apr
25.

Cytotoxic, genotoxic and the hemolytic effect of titanium dioxide (TiO2 )
nanoparticles on human erythrocyte and lymphocyte cells in vitro.

Ghosh M(1), Chakraborty A, Mukherjee A.

Author information:
(1)Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study,
Department of Botany, University of Calcutta, Kolkata, India.

With the increasing clinical use of titanium dioxide (TiO2 ) nanoparticles, a
better understanding of their safety in the blood stream is required. The present
study evaluates the toxic effect of commercially available TiO2 nanoparticles
(~100 nm) using a battery of cytotoxic, genotoxic, hemolytic and morphological
parameters. The cytotoxic effects of TiO2 nanoparticles in human lymphocyte cells
were studied with respect to membrane damage, mitochondrial function, metabolic
activity and lysosomal membrane stability. Genotoxicity in lymphocyte cells was
quantitated using a comet assay. The mode of cell death (apoptosis/necrosis) was
evaluated using PI/Annexin V staining. TiO2 nanoparticles were also evaluated for
their hemolytic properties, osmotic fragility and interaction with hemoglobin.
Human erythrocyte cells were studied for morphological alterations using atomic
force microscopy (AFM). Results suggest that the particles could induce a
significant reduction in mitochondrial dehydrogenase activity in human lymphocyte
cells. Membrane integrity remained unaffected by nanoparticle treatment. DNA
damage and apoptosis were induced by TiO2 nanoparticles in a dose-dependent
manner. A study on human erythrocyte cells revealed a hemolytic property of TiO2
nanoparticles characterized by spherocytosis and echinocytosis. Spectral analysis
revealed a hemoglobin TiO2 nanoparticle interaction. Our in vitro study results
suggest that commercially available blood contacting nanoparticles (TiO2
nanoparticle) should be carefully evaluated for their toxic potential.

7. ACS Nano. 2013 Mar 26;7(3):1929-42. doi: 10.1021/nn302280n. Epub 2013 Feb 15.

Effect of treatment media on the agglomeration of titanium dioxide nanoparticles:
impact on genotoxicity, cellular interaction, and cell cycle.

Prasad RY(1), Wallace K, Daniel KM, Tennant AH, Zucker RM, Strickland J, Dreher
K, Kligerman AD, Blackman CF, Demarini DM.
(1)U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
27711, United States.

The widespread use of titanium dioxide (TiO2) nanoparticles in consumer products
increases the probability of exposure to humans and the environment. Although
TiO2 nanoparticles have been shown to induce DNA damage (comet assay) and
chromosome damage (micronucleus assay, MN) in vitro, no study has systematically
assessed the influence of medium composition on the physicochemical
characteristics and genotoxicity of TiO2 nanoparticles. We assessed TiO2
nanoparticle agglomeration, cellular interaction, induction of genotoxicity, and
influence on cell cycle in human lung epithelial cells using three different
nanoparticle-treatment media: keratinocyte growth medium (KGM) plus 0.1% bovine
serum albumin (KB); a synthetic broncheoalveolar lavage fluid containing PBS,
0.6% bovine serum albumin and 0.001% surfactant (DM); or KGM with 10% fetal
bovine serum (KF). The comet assay showed that TiO2 nanoparticles induced similar
amounts of DNA damage in all three media, independent of the amount of
agglomeration, cellular interaction, or cell-cycle changes measured by flow
cytometry. In contrast, TiO2 nanoparticles induced MN only in KF, which is the
medium that facilitated the lowest amount of agglomeration, the greatest amount
of nanoparticle cellular interaction, and the highest population of cells
accumulating in S phase. These results with TiO2 nanoparticles in KF demonstrate
an association between medium composition, particle uptake, and nanoparticle
interaction with cells, leading to chromosomal damage as measured by the MN
assay.

http://safecosmetics.org/article.php?id=1112
http://www.ccohs.ca/headlines/text186.html

By piotrbein

https://piotrbein.net/about-me-o-mnie/