SARS CoV-2 vax cause neurodegeneration and immuno-compromise, also when given to kids or self-spread from the vaxed!


by Stephanie Seneff June 1, 2021 



There are many reasons to be wary of the COVID-19 vaccines, which have been rushed to market with grossly inadequate evaluation and aggressively promoted to an uninformed public, with the potential for huge, irreversible, negative consequences.

One potential consequence is to exhaust the finite supply of progenitor B cells in the bone marrow early in life, causing an inability to mount new antibodies to infectious agents.

An even more worrisome possibility is that these vaccines, both the mRNA vaccines and the DNA vector vaccines, may be a pathway to crippling disease sometime in the future.

Through the prion-like action of the spike protein, we will likely see an alarming increase in several major neurodegenerative diseases, including Parkinson’s disease, CKD, ALS and Alzheimer’s, and these diseases will show up with increasing prevalence among younger and younger populations, in years to come.

Unfortunately, we won’t know whether the vaccines caused this increase, because there will usually be a long time separation between the vaccination event and the disease diagnosis. Very convenient for the vaccine manufacturers, who stand to make huge profits off of our misfortunes — both from the sale of the vaccines themselves and from the large medical cost of treating all these debilitating diseases. 


[1] MDJ Dicks, AJ Spencer, NJ Edwards et al. A Novel Chimpanzee Adenovirus Vector with Low Human Seroprevalence: Improved Systems for Vector Derivation and Comparative Immunogenicity. PLoS ONE 2012; 7(7): e40385.

[2] J Custers, D Kim, M Leyssen et al. Vaccines Based on Replication Incompetent Ad26 Viral Vectors: Standardized Template with Key Considerations for a Risk/Benefit Assessment. Vaccine 2021; 39(22): 3081-3101.

[3] N Mukai, SS Kalter, LB Cummins et al. Retinal Tumor Induced in the Baboon by Human Adenovirus 12. Science 1980; 210: 1023-1025.

[4] S. Seneff and G. Nigh. Worse Than the Disease? Reviewing Some Possible Unintended Consequences of the mRNA Vaccines Against COVID-19. International Journal of Vac- cine Theory, Practice, and Research 2021; 2(1): 38-79.

[5] A Greinacher, T Thiele, TE Warkentin, et al. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. NEJM 2021; April 9, 2021 [Epub ahead of print]. 

[6]B Pancevski. Scientists Say They Found Cause of Rare Blood Clotting Linked to AstraZeneca Vaccine. Wall Street Journal. March 19, 2021. 

[7] E Kowarz, L Krutzke, J Resi, et al. “Vaccine-Induced Covid-19 Mimicry” Syndrome: Splice Reactions within the SARS-CoV-2 Spike Open Reading Frame Result in Spike Protein Variants that May Cause Thromboembolic Events in Patients Immunized with Vector-Based Vaccines. Research Square Preprint. May 26, 2021. 

[8] N Lewis, C Evelegh, and FL Graham. Cloning and sequencing of the cellular-viral junctions from the human adenovirus type 5 transformed 293 cell line. Virology 1997; 233: 423-429.

[9] G Shaw, S Morse, M Ararat et al. Preferential Transformation of Human Neuronal Cells by Human Adenoviruses and the Origin of HEK 293 Cells. FASEB J 2002; 16(8): 869-71.

[10] Y Lei, J Zhang, CR Schiavon et al. SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2 Circulation Research 2021; 128: 1323-1326.

[11] EM Rhea, AF Logsdon, KM Hansen et al. The S1 Protein of SARS-CoV-2 Crosses the Blood-Brain Barrier in Mice. Nature Neuroscience 2021; 24: 368-378.

[12] TP Buzhdygana, BJ DeOrec, A Baldwin-Leclairc et al. The SARS-CoV-2 Spike Protein Alters Barrier Function in 2D Static and 3D Microfluidic in-Vitro Models of the Human Blood-Brain Barrier. Neurobiol Dis 2020; 146: 105131.

[13] VS Hernández, MA Zetter, EC Guerra et al. ACE2 expression in rat brain: implications for COVID-19 associated neurological manifestations. bioRxiv preprint May 3, 2021.

[14] P Brundin, A Nath, and JD Beckham. Is COVID-19 a Perfect Storm for Parkinson’s Disease? Trends in Neurosciences 2020; 43(12): 931-933.

[15] IHCHM Philippens, KP Böszörményi, JA. Wubben et al. SARS-CoV-2 causes brain inflammation and induces Lewy body formation in macaques. bioRxiv preprint. May 5, 2021.

[16] E Dowd and DP McKernan. Back to the future: lessons from past viral infections and the link with Parkinsons disease. Neuronal Signaling 2021; 5: NS20200051.

[17] M Mahic, S Mjaaland, HM Bvelstad, et al. Maternal Immunoreactivity to Herpes Simplex Virus 2 and Risk of Autism Spectrum Disorder in Male Offspring. mSphere 2017; 2(1): e00016-17.

[18] R Savica, JH Bower, DM Maraganore, eta l. Bell’s Palsy Preceding Parkinson’s Disease: A Case-Control Study. Movement Disorders 2009; 24(10): 1530-3.

[19] S Starkstein, S Gellar, M Parlier et al. High Rates of Parkinsonism in Adults with Autism. Journal of Neurodevelopmental Disorders 2015; 7: 29.

[20] S. Nasralla, DD Rhoads, and BS Appleby. Prion Diseases. In: Hasbun, MD MPH R., Bloch, MD MPH K.C., Bhimraj, MD A. (eds) Neurological Complications of Infectious Diseases. Current Clinical Neurology. Humana, Cham. 2021.

[21] M Glatzel, E Abela, M Maissen and A Aguzzi. Extraneural Pathologic Prion Protein in Sporadic Creutzfeldt-Jakob Disease N Engl J Med 2003; 349: 1812-20.

[22] J Marchant. Prion Diseases Hide Out in the Spleen. Nature January 26, 2012: 9904.

[23] N Daude. Prion Diseases and the Spleen. Viral Immunol 2004; 17(3): 334-49.

[24] J-K Choi, S-J Park, Y-C Jun et al. Generation of Monoclonal Antibody Recognized by the GXXXG Motif (Glycine Zipper) of Prion Protein. Hybridoma (Larchmt) 2006; 25(5): 271-7.

[25] BK Mueller, S Subramaniam, and A. Senes. A Frequent, GxxxG-mediated, Transmembrane Association Motif Is Optimized for the Formation of Interhelical C-H Hydrogen Bonds. Proc Natl Acad Sci USA 2014; 111(10): E888-95.

[26] R Broer, B Boson, W Spaan et al. Important Role for the Transmembrane Domain of Severe Acute Respiratory Syndrome Coronavirus Spike Protein during Entry. J Virol 2006; 80(3): 1302-1310.

[27] Uniprot. Spike Glycoprotein.

[28] JB Classen. Review of COVID-19 Vaccines and the Risk of Chronic Adverse Events Including Neurological Degeneration. Journal of Medical-Clinical Research and Reviews 2021; 5(4): 1-7.

[29] Y Chu and JH Kordower. The Prion Hypothesis of Parkinsons Disease. Current Neurology and Neuroscience Reports v2015; 15: 28.

[30] MJ Young, M O’Hare, M Matiello et al. Creutzfeldt-Jakob Disease in a Man with COVID-19: SARS-CoV-2-Accelerated Neuro Degeneration? Brain, Behavior, and Immunity 2020; 89: 601-603.

[31] D Idrees and V Kumar. SARS-CoV-2 Spike Protein Interactions with Amyloidogenic Proteins: Potential Clues to Neurodegeneration. Biochem Biophys Res Commun 2021; 554: 94-98.

[32] TC Yang, K Dayball, Y H Wan, and J Bramson. Detailed Analysis of the CD8+ T-Cell Response following Adenovirus Vaccination. J Virol 2003; 77(24): 13407-13411.

[33] R Cross. The Tiny Tweak behind COVID-19 Vaccines. Chemical & Engineering News 2020; 98(38).

[34] G Tetz and V Tetz. SARS-CoV-2 Prion-like Domains in Spike Proteins Enable Higher Affinity to ACE2. TBDL Preprint. 2020. 

[35] G Tetz and V Tetz. Prion-like Domains in Eukaryotic Viruses. Scientific Reports 2018; 8: 8931.

[36] K Lederer D Castaño, DG Atria et al. SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. Immunity 2020; 53: 1281-1295.

[37] A Aguzzi and M Heikenwalder. Prions, Cytokines, and Chemokines: A Meeting in Lymphoid Organs. Immunity 2005; 22: 145-154.

[38] TW LeBien and TF Tedder. B Lymphocytes: How they Develop and Function. Blood 2008; 112(5): 1570-1580.

[39] AJ Raeber, MA Klein, R Frigg et al. PrP-Dependent Association of Prions with Splenic but not Circulating Lymphocytes of ScrapieInfected Mice. EMBO J 1999; 18: 2702-2706.

[40] W Xiao, A Shameli, CV Harding et al. Late Stages of Hematopoiesis and B Cell Lymphopoiesis are Regulated by α-Synuclein, a Key Player in Parkinson’s Disease. Immunobiology 2014; 219(11): 836-44.

[41] R Castro-Seoane, H Hummerich, T Sweeting et al. Plasmacytoid Dendritic Cells Sequester High Prion Titres at Early Stages of Prion Infection. PLoS Pathogens 2012; 8(2): e1002538.

[42] NA Mabbott and GG MacPherson. Prions and Their Lethal Journey to the Brain. Nature Reviews Microbiology 2006; 4: 201-211.

[43] D Frasca, E Van der Put, RL Riley et al. Reduced Ig Class Switch in Aged Mice Correlates with Decreased E47 and Activation-Induced Cytidine Deaminase. J Immunol 2004; 172(4): 2155-2162. 

[44] Z Keren, S Naor, S Nussbaum et al. B-Cell Depletion Reactivates B Lymphopoiesis in the BM and Rejuvenates the B Lineage in Aging. Hematopoiesis and Stem Cells 2011; 117(11): 3104-12.

[45] AF Ogata, C-A Cheng, M Desjardins et al. Circulating SARS-CoV-2 Vaccine Antigen Detected in the Plasma of mRNA-1273 Vaccine Recipients. Clinical Infectious Diseases May 20, 2021 [Epub ahead of print] ciab465d.

By piotrbein